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Abstract—This paper presents a successful graphical design methodology for Discrete-Time or Continuous-Time 
Proportional Integral Derivative (DTCT-PID) controller parameters that satisfy H-infinity complementary 

sensitivity constraint for a single input single output (SISO) system.  These problems can be solved by finding all 

achievable DTCT-PID parameters that simultaneously stabilize the closed-loop characteristic polynomial and 
satisfy constraints defined by a set of related complex polynomials.  The bilinear transformation is used to describe 

the Discrete-Time Proportional Integral Derivative (DTPID) controller parameters since this methodology is based 

on frequency response and sampled data collection of the system.  This approach allows the user to apply the same 

procedures for discrete-time or continuous-time H-infinity complementary sensitivity design of PID controller 
parameters.  This methodology has been applied to a DC motor data to demonstrate the application of this 

methodology. 
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1 Introduction 

The design of Proportional Integral Derivative (PID) 
controllers have been researched in the literatures for 

many decades.  PID controllers have been 

implemented in many industrial and manufactory 
applications.  Design control algorithms that can 

handle communication delays and robustness for 

unknown disturbance environment are particularly 

important in process control systems.  Recently, a 
design method that works directly in the digital 

domain is more prevalent in an autonomous system.  

H-infinity complementary sensitivity design is 
particularly the target of this paper since in many 

applications there is no information of the uncertain 

disturbances.   
Most of the early work in designing PID 

controllers required finding all PID controllers that 

stabilized the nominal plant model, where the rational 

transfer function model was known [1] and [2].  The 
method introduced by Tan in [3] broke the numerator 

and denominator of plant transfer function into even 

and odd parts.  Ho introduced a generalization of the 

Hermite-Biehler theorem for H  PID controller 

design [4].  Bhattacharyya and Keel looked at a 

similar problem for first-order controllers [5].  In [6] , 

Ho and Lin looked at PID controller design for robust 
performance of a rational plant transfer function.  In 

[7], Keel and Bhattacharyya allowed the time-delays 

in the nominal model when they investigated the 
weighted sensitivity and robust stability problems.  In 

[8], Emami and Watkins developed a method for 

robust performance design of PID controller 
parameters.   In [9], Saeki introduced a method for 

determining the number of unstable poles in each 

region of PI and PD planes.  In [10], Žáková 

introduced constrained pole assignment to design PD 
controllers for a double integrator plant model with 

time delays or time constant.   

A particular application in this area is in an 
autonomous vessel design.  Ker-Wei, Yu and Hsu 

introduced particle swarm optimization method for a 

ship coordinate system [11].  Xia, Shi, Fu, Wang, and 
Bian applied hybrid PID controllers with a neural 

network to make an adaptive control for a ship [12].  
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Pettersen and Fossen added an integral action in the 

feedback path to control the orientation and position 
of a ship with experimental results [13].   

Tzamtzi, Koumboulis, and Skarpetis looked at the 

parameters of PID controller using a metaheuristic 
algorithm method [14].  They developed the 

metaheuristic algorithm to adjust the PID parameters 

and meet the performance requirement for a pouring 

task.  Chang and Chen applied a fractional PID 
controller to meet the performance requirement for an 

active magnetic bearing system [15].  In [15], an 

adaptive genetic algorithm applied to determine the 
PID controller parameters that optimized a multi-

objective cost function.  

Unfortunately, most of the work in this area has 

concentrated on the design of continuous-time PID 
controllers [1-10]. However, in a networking 

autonomous system the controllers should be 

implemented as digital compensators.    In [16], 
Emami and Watkins applied discrete time H-infinity 

complementary sensitivity PID controller design to a 

DC motor based on the frequency data measurement.  
They used delta operator to describe the PID 

controllers.  In [17] and [18], Keel, Bhattacharyya, 

Datta, and Rego developed backward differences to 

design discrete time PID controllers that stabilized the 
Tchebysheve representation of a discrete time system.  

In [19] and [20], Emami, Watkins, and Lee applied 

the delta operator to obtain a unified approach for 
finding stability boundaries of PID controllers for 

arbitrary order transfer functions with time delay in 

the frequency domain.  The determination of all 
achievable PID controllers in the parameter space was 

introduced in [9], [19], and [20]. 

The current paper is the extension of our previous 

work in [16], [21], and [22].  The extension is to 
introduce a unified approach for H-infinity Discrete-

Time or Continuous-Time Proportional Integral 

Derivative (DTCT-PID) controller parameters for both 
discrete or continues time systems under a common 

frame work.   In addition, an experimental data of 

SRV-02 DC motor from Quanser Innovate Educate in 

Figure 1 is used to demonstrate the application of the 
current paper.   

 

 

 
 

Fig 1.  SRV02 DC motor 

 

The goal of current paper is to define all 
achievable DTCT-PID controller parameters that 

simultaneously stabilize the closed-loop discrete time 

or continuous time system and satisfy an H

complementary sensitivity constraints.  

Complementary sensitivity constraint is particularly 

the target here since the assumption is that there is no 
information of disturbance environment.  Designing 

DTCT-PID controller for complementary sensitivity 

constraint allows the system to perform reasonably 

more robust.  The bilinear transformation is used to 
describe the Discrete-Time Proportional Integral 

Derivative (DTPID) controller parameters for systems 

with the modeling in digital and sampled-data 
environment [22], [23], [24], and [25].  In addition, 

this methodology is based on frequency response 

analysis.  This work builds upon the pervious 

development in [8], [16], [21], [22], and [24].  
The remainder of this paper is organized as 

follows.  The design statement is introduced in 

Section 2.  This design methodology is performed by 
using SRV-02 DC motor data from Quanser Innovate 

Educate [26] in Section3.  The conclusion is presented 

in Section 4.  Finally, the acknowledgement of this 
paper is in Section 5. 

 

 

2 Design Statement 

Consider a Single Input Single Output (SISO) System 
in Figure 2, where the nominal continuous-time plant 

transfer function is ( )oG s  with a time delay of   such 

as:                                     
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0( ) ( ) .s
pG s G s e                      (1)     

 

             
 

Fig. 2.  Open loop system 

 
The bilinear discrete time modeling of system is 

defined as: 

 

 ( ) ( ), ,p p sG z G s T                                            (2) 

 

where,   is the bilinear transformation and sampling 

period is sT .  The relationship between the bilinear 

transformation and Laplace transformation is

2 1

1
s

z
s

T z





. Using the bilinear transformation for 

discrete time modeling allows the designer to consider 

the fractional time delay in the model for the discrete 
time analysis in frequency response.   

The unity feedback closed-loop system shown in 

Figure 3, where pG  can be selected either discrete 

time or continuous time model of the system.  cG  is 

either the discrete or continuous time PID controller.  

The either sampled or analog reference input and 

output signals are R  and ,Y  respectively.  

 

 
Fig. 3.  Block diagram of the closed loop system 

 

The discrete time bilinear frequency domain 

transformation is used as:  
 

 

 

2 cos( ) 1 sin( )2 1
: ,

cos( ) 1 sin( )1

s

s

j T
s s

j T
s s s s

T j Te

T T T j Te





 


 

 
 

 
    

           (3) 

 

where   is the frequency-scale warping range 

between 0 s   .  s  is the Nyquist frequency.   

The unified frequency transformation for both 

continuous time and discrete time data are defined as:  

 

, 0, [0, )

.2 1
, 0, [0, )

1

s

s

s

j T

s sj T
s

j T

e
T

T e





 


 

   
 

  
  

 

  

                        (4) 

 
The unified transfer function of the system in (1) 

or (2) in frequency domain can be defined in terms of 

their real and imaginary parts as 
 

( ) ( ) ( ).p p pG R j I                                         (5) 

 

The unified DTCT-PID controller is defined in 

frequency domain as: 
 

( ) ,i
c p d

K
G K K 


                                         (6) 

 

where pK , iK , and dK  are the proportional, integral, 

and derivative gains, respectively.  

The deterministic values of pK , iK , and dK  for 

which the closed-loop characteristic polynomial is 

Hurwitz stable was defined in [9], [19], and [20].  In 

the current paper, the problem is to find all achievable 
DTCT-PID controllers that stabilize the system and 

satisfy the H  complementary sensitivity constraint 

such as: 
 

0( ) ,T  

                                                        (7) 

                                                                                                                   

where 
( ) ( )

( )
1 ( ) ( )

p c

p c

G G
T

G G

 


 



 is the complementary 

sensitivity function and 0  is a real positive scalar.  

The complex function in (7) for a SISO system for 

each value of   can be written in terms of its 

magnitude and phase angles as: 
 

( )
0( ) .j TT e                                       (8) 

 

If (8) holds, then for each value of  : 

 

0( ) ,Tj
T e

                                            (9) 

 

must be true for some [0,2 )T  , where 

( )T T   .  Consequently, all PID controllers that 

cG  pG
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satisfy (7) must lie at the intersection of all controllers 

that satisfy (9) for all [0,2 )T  . 

To solve this problem for each value of 

[0,2 )T   all DTCT-PID controller parameters on 

the boundary of  (9) will be defined.  It is easy to 
show from (9), that all the PID controllers on the 

boundary must satisfy the following characteristic 

equation:  
 

 0, , , 0,T sP T                                                (10) 

 

where, 

 0
0

1
, , , 1 ( ) ( ) ( ) ( ) .Tj

T s p c p cP T G G G G e
      


  

Note that (10) reduces to the frequency response of 
the standard closed-loop characteristic polynomial as 

0  .  Substituting (5), (6), and 

cos sinTj
T Te j

     into (10) and solving for the 

real and imaginary parts yields:  
 

,Rp p Ri i Rd d RX K X K X K Y                             (11) 

and 

 

,Ip p Ii i Id d IX K X K X K Y                                (12) 

                                                                         

where 

0 0

1 1
( ) 1 cos ( ) sin ,

Rp

p T p T

X
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 
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  
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s

T p T p

T
X

T

R I




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 




   
     

    

 

 

  

2

0 0
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1 1
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,
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s

T p T p

R
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X

T

R I

Y

 


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 






   
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 

 

0 0

1 1
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 
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s
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 

  

2

0 0

2 sinc

1 cos

1 1
1 cos ( ) sin ( ) ,

0.

s
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s

T p T p

I

T
X

T

R I

Y

 


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 




   
     

    



 

 
This is a three-dimensional system in terms of the 

controller parameters pK , iK , and dK , that 

corresponds to three degrees of freedom.  The solution 

of this problem is defined in three main methods.   

The first method obtains all PID controller 
parameters that satisfy the H-infinity complementary 

sensitivity constraint and stability boundaries in the 

( , )p iK K  plane. The boundary of characteristic 

equation in (10) achieves in this plane for a fixed 

value of derivative gain.  After setting dK  to the fixed 

value of dK , (11) and (12) can be rewritten as: 

 

.
Rp Ri p R Rd d

Ip Ii I Id di

X X K Y X K

X X Y X KK

     
     

     

                 

                                                                             (13) 

 

Solving (13), for 0 s    and 0 2T   , gives 

the following equations for the discrete time 

proportional and integral parameters: 

 

 0

0 0

2

2
0 0

, , ,

1 1
( ) cos 1 ( ) sin

,
2 1

( ) 1 cos

p T s

p T p T

p T

K T

R I

G

  

   
 

 
 



   
      

    

 
  

 
 

      

                                                                             (14) 
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 
 

  
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 
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  
 

 



  
  

  
 

    
  

 
   

 
 

 

  (15) 

 

As 0sT  , for 0    and 0 2T    this result 

corresponds to the continuous time systems.  In 

continuous time the proportional parameters is the 

same expression as (14) and the following equation is 

for integral gains.   

 
2

0

0 0

2

2
0 0

( , , )

1 1
( ) sin ( ) cos 1

.
2 1

( ) 1 cos

i T d

p T p T

p T

K K

R I

G

   

    
 

 
 

 

    
      

    

 
  

 
 

 

  (16) 

        

Note, if 0 1,   then 0T  should be avoided as 

the denominators of (14), (15), and (16) go to zero.  

Setting 0   in  (13) obtains:  

 

0 (0) 0
,

0 (0) 0

pRi

Ii i

KX

X K

    
    
    

                                 

  (17) 

 

and conclude that  00, , ,p T sK T   is arbitrary and 

 00, , , 0i T sK T   , unless (0) (0) 0p pI R  , which 

holds only when the plant has a zero at the origin. 
The second method obtains all PID controller 

parameters that satisfy the H-infinity complementary 

sensitivity constraint and stability boundaries in the 

( ,  )p dK K plane. The boundary of characteristic 

equation in  (10) achieves in this plane for a fixed 

value of integral gain. After setting iK  to the fixed 

value iK , (11) and (12) can be rewritten as:  

 

.
Rp Rd p R Ri i

Ip Id I Ii id

X X K Y X K

X X Y X KK

     
     

     

                   

  (18) 

 

Solving (18) for 0 s    and 0 2T   , gives  

the same expression as (14) for the discrete time or 

continuous time proportional parameters and it gives 
the following equation for the discrete time derivative 

parameters:  

 
  

 
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0
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2
0 0
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1
( ) sin

cos 1
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2 1

2 ( ) 1 cos sinc

s
d T s i

s
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s
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T
K T K

T

R

T

I
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
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 




 


   
 


 

  
   
  

 
     
  

 
  

 
 

 

             (19) 
 

As 0sT  , for 0    and 0 2T   , this 

result corresponds to the following expression  for the 
continuous time derivative parameters.  

  

0 2

2

2
0 0

( , , )

1 1
( ) sin ( ) cos 1

.
2 1

( ) 1 cos

i
d T

p T p T

p T

K
K

R I

G

  


   
 

  
 

 

    
       
    

 
  

 
 

     

                (20) 
 

Note, if 0  , iK  must be equal to zero for a 

solution to exist.  Furthermore, as (0) 0pI   for all 

real plants,  00, , ,d T sK T   is arbitrary and:         

 

 0

0

1
0, , , .

1
(0) 1 cos

p T s

p T

K T

R

 







 
 

 

          

(21) 
 

If 0 1,  then 0T  should be avoided as the 

denominators of (14), (19), (20), and  (21)  go to zero. 
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The third method applies all achievable PID 

controller parameters that satisfy the H-infinity 
complementary sensitivity constraint and stability 

boundaries in the in the ( ,  )i dK K
 

plane.  The 

boundary of characteristic equation in  (10) obtains for 

a fixed value of proportional gain.  After setting pK  

to the fixed value pK , (11) and (12) correspond the 

following: 

 

.
R Rp pRi Rd i

Ii Id d I Ip p

Y X KX X K

X X K Y X K

    
     

      

                

 (22) 
 

Despite the fact that the coefficients matrix are 

singular, a solution occurs at any frequency of i . 

These frequencies can be found graphically by 

plotting  0, , ,p T sK T    from (14) verses the 

frequency range of 0 s   , and 0 2T    for the 

discrete time PID controllers.  Next step is to find 
interception of the fixed value of proportional gain, 

i.e., pK  and the  0, , ,p T sK T    curves. These 

interceptions correspond the frequencies of 'i s . At 

these frequencies,  0, , ,d i T sK T    and 

 0, , ,i i T sK T    satisfy the straight lines equation such 

as: 
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 
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2
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cos 1
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1
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1
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.
2 1
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d i T s
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i i T s

i i s
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i s

p i T

i p i T i s

K T

T
K T

T

R

T

I

G T

  


  

 

 




 


   
 






  
   
  

 
     
  

 
  

 
 

 

(23) 

 

  This result corresponds to the continuous-time 

cases as 0sT   for 0    and 0 2T    that 

gives the continuous time derivative and integral PID 

parameters such as:  
 

0
0 2

2

2
0 0

( , , )
( , , )

1 1
( ) sin ( ) cos 1

.
2 1

( ) 1 cos

i i T
d i T

i

p i T p i T

i p i T

K
K

R I

G

  
  



   
 

  
 

 

    
       
    

 
  

 
 

 

(24) 

  

Note that at 0  ,  00, , ,d T sK T   is arbitrary and 

 00, , , 0i T sK T   , unless (0) (0) 0p pI R  , which 

holds only when the plant has a zero at the origin.  In 
such case, a PID compensator should be avoided as 

the PID pole cancels the zero at the origin and the 

system becomes internally unstable. Note that if 

0 1, 0T   should be avoided as the denominators 

of  (23) and (24) go to zero. 

 
 

3 Application Example 

In this section, a discrete-time PID controller is 

designed to regulate the shaft position of a SRV-02 

DC motor from Quanser Innovate Educate [26], in 
Figure 1.  The goal is to find all DTPID controllers 

that stabilize the system and satisfy the 

complementary sensitivity constraint in (7), where 

0 1.25   [27], and the sampling period is 0.025sT   

seconds.  A communication delay of 0.1   seconds 

is defined here in the forward path.  The nominal 

model of SRV-02 in continuous time with the 

commutation delay has been identified as:  
 

 

1.53
( ) .

0.024 1

s
pG s e

s s




                                (25) 

 

The procedures to achieve this goal are: 

1) Use (2) to find the discrete time bilinear 
transformation of the continuous time model in (25): 

 
2

4

2

0.006299 0.0126 0.
(

006299

1.34 0.3404
) .p

z z

z z
G z z

 

 
   

                              (26) 
 

2) Equations  (14) and (15) in method 1 are used 

in the ( ,p iK K ) plane for a fixed value of 0.002dK  .  

All DTPID controllers that satisfy the complementary 

sensitivity constraint in (7) are found by setting 
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0 1.25   and 0.025sT   seconds then finding the 

intersection of all regions for frequency of 0 s  

and  [0,2 )T  .  

3) The DTPID stability boundary can be found 

the same as stage 2 by setting 0    in (14) and (15).  

This boundary shows with the red-bold line in Figure 

4.  

4) The region that satisfies the complementary 
sensitivity constraint is shown in Figure 4 with blue-

solid lines.  The intersection of all regions inside the 

stability boundary of the ( ,p iK K ) plane corresponds 

all DTPID controller parameters that satisfy the 
complementary sensitivity constraint in (7).  

5) The procedure 2-4 can be repeated for the 

continuous time case as 0sT  .  

 

 
Fig. 4.  Discrete-time stability boundary and 

complementary sensitivity region in the ( ,p iK K ) plane 

 

To verify the results, an arbitrary controller from 
this region is chosen, giving us the DTPID controller 

from (6) such as: 

 

0.01
( ) 2.01 0.002 .cG  


                                 (27) 

 
The Bode response of the discrete-time 

complementary sensitivity function with the PID 

controller in (27) is shown in Figure 5. As can be 

seen, ( ) 1,T 

  which is less than 0 1.25  .  

Consequently, the design goal is met. To verify the 

stability of system the closed loop step response is 

shown in Figure 6. 

 
Fig. 5.  Magnitude of discrete-time complementary 

sensitivity frequency response SRV-02 DC motor with 

DTPID controller in equation(27)  

 

 
Fig. 6.  Discrete time step response of the closed-loop 

SRV-02 DC motor with DTPID controller 

 

The second method applies equations (14) and (19) 

in the ( ,p dK K ) plane for a fixed value of 0.05iK  .  

The DTPID controller is designed to satisfy the 

complementary sensitivity constraint with 0 1.25   

and 0.025sT   seconds. The region that satisfies the 

discrete-time complementary sensitivity constraint 
and the stability boundary are shown in Figure 7.  The 

intersection of all regions inside the stability boundary 

of the ( ,p dK K ) plane is the discrete-time 

complementary sensitivity region.  
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Fig. 7.  Discrete-time stability boundary and 

complementary sensitivity region in the ( ,p dK K ) plane 

 

To verify the results, an arbitrary controller from 
this region is chosen as: 

 

0.05
( ) 3.11 0.005 .cG  


                                 (28) 

 
The discrete-time complementary sensitivity 

constraint with the DTPID controller in (28) gives 

( ) 1.06T 

 , which is less than 0 1.25  . 

Consequently, the design goal is met.          

Method 3 applies in the ( , )i dK K  plane for a fixed 

value of pK .  Plot of  0, , ,p T sK T    and 

 , , ,p T sK T    from (14) for various values of 

0 s    and [0,2 )T   are shown in Figure 8.   

 

 
Fig. 8.  Plots of  0 0, , ,p TK T    versus   

For each curve in Figure 8, the 'i s  are the 

frequencies at which  0, , , 1.5p T s pK T K     . 

Each i  is substituted into (23) to find the required 

region for choosing PID controller parameters. In 

addition, the boundary at  00, , , 0i T sK T   . The 

region that satisfies the discrete-time complementary 

sensitivity constraint and the stability boundary are 
shown in Figure 9.  The intersection of all regions 

inside the discrete-time stability boundary of the (

,i dK K ) plane is the complementary sensitivity 

region. 

To verify the results, an arbitrary controller from 

this region is chosen, giving us the DTPID controller 
as: 

 

1.04
( ) 1.5 0.3 .cG  


                                       (29) 

 

The discrete-time complementary sensitivity 
function with the DTPID controller in (29) result is

( ) 1.17T 

 , which is less than 0 1.25  . 

Consequently, the design goal is met.    
 

 
Fig. 9.  Discrete-time stability boundary and 

complementary sensitivity region in the ( ,i dK K ) plane 

 

 

4 Conclusions  

All achievable Discrete-Time or Continuous-Time 
Proportional Integral Derivative (DTCT-PID) 

controllers that satisfy H  complementary sensitivity 

constraint of a single input single output (SISO) 
system with time delay can be found from a graphical 

technique.  The bilinear transformation is used to 
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describe the Discrete-Time Proportional Integral 

Derivative (DTPID) controller parameters since this 
methodology is based on frequency response and 

sample data collection of the system.  It is shown that 

the continuous-time or discrete-time designs can be 
understood under a common structure through the 

bilinear transformation.  This methodology is simple 

to understand and easy to implement.  A DC motor 

data with a communication delay in the feedback loop 
is used to demonstrate the application of this 

methodology. 
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